APPARENT LINEAR RELATIONSHIP, COMPENSATION LAW AND OTHERS. PART II

J. NORWISZ and Z. SMIESZEK

Institute for Non-Ferrous Metals, Gliwice (Poland)

Z. KOLENDA

University of Mining and Metallurgy, Cracow (Poland) (Received 1 May 1989)

ABSTRACT

In estimating the Arrhenius equation coefficients from kinetic data, a linear relationship between the logarithm of the pre-exponential factor and the activation energy is assumed; this is called the "compensation law". From analysis of the estimation procedure, it was found that the coefficient of this last equation will be close to the geometrical average temperature in the experiments multiplied by the gas constant.

A similar effect was observed for the thermodynamic experiments. An apparent linear relationship exists between the enthalpy and entropy determined from the experimental free enthalpy results.

These presumptions were checked for 72 sets of experimental data recently presented in the literature and, in general, overestimations of the quality of the experiments were detected.

INTRODUCTION

The theory presented in Part I of this study has been the basis for a re-analysis of many sets of experimental results available in the literature with respect to the possible occurrence of the expected relationship between the linear equation coefficients. The subjects of the analysis are data collected in articles published during the last two years by both Thermochimica Acta and the Journal of Thermal Analysis. Another set was found at random in High Temperature Science.

In this work, all data sets found during a review of the journals mentioned have been utilized. All of them represented a simultaneous change of two values determined as a result of elaborating the experimental results by means of the linear equation coefficients estimation. In most cases, the authors of the articles did not suggest the existence of any relationship between the value cited. It should be stressed that the only aim of our article was to draw attention to the possibility of making an error from an incorrect interpretation of the experimental results by means of the apparently safe method of least-squares. A re-estimation of the results presented has been left to the individual authors.

ANALYSIS OF THE RELATIONSHIP BETWEEN THE LINEAR EQUATION COEFFICIENTS

The form of eqn. (25) * depends on the model equation used for a description of the relationship between the experimental results, as well as on the way the non-linear model equation describing the relationships of the measured values is transformed to a linear form [l]. They may be varied: by the logarithm, developing a series, utilizing the approximation equations, etc.

These variables y and x are not usually measured directly, but they are known functions of experimental values. In the case of the Arrhenius equation, the linearization leads to

$$
\log_{10}(k) = \log_{10}(k_0) - E/[\log_e(10)RT] \tag{26}
$$

which is the form most frequently used. *k* is the reaction rate constant at temperature *T*, *E* is the activation energy, *R* the gas constant, k_0 the pre-exponential constant and *T* the absolute temperature.

In comparison with eqn. (1)

$$
y = \log_{10}(k) \tag{27a}
$$

$$
x = -1/[\log_e(10)RT] \tag{27b}
$$

$$
a = E \tag{27c}
$$

$$
b = \log_{10}(k_0) \tag{27d}
$$

are obtained.

Thus the direction coefficient value α of eqn. (25) is approximately equal to

$$
\alpha = \sum (1/T) / [\log_e(10) Rn] \tag{28}
$$

where n is the number of measurements.

In a case where the free enthalpy value (Gibbs function) is measured

$$
G = H - TS \tag{29}
$$

^{*} The numbering of equations remains the same for both parts of the article.

where H is the enthalpy and S the entropy, usually the substitutions

$$
y = G/T \text{ or } y = -\log_e(K_i) \tag{30a}
$$

$$
x_i = 1/T \tag{30b}
$$

$$
a = H \qquad \text{or} \quad a = H/R \tag{30c}
$$

$$
b = -S \quad \text{or} \quad b = -S/R \tag{30d}
$$

are used, where G is the free enthalpy value determined for temperature *T,* while K is the equilibrium constant.

Thus the direction coefficient value for eqn. (25) is close to

$$
\alpha = -\Sigma (1/T)/n \tag{31}
$$

Analogous to the free enthalpy equation is the simple equation of vapour pressure change *p* with temperature

$$
\log_{10}(p) = A + B/T \tag{32a}
$$

which leads to the substitution

$$
y = \log_{10}(p) \tag{32b}
$$

$$
x = 1/T \tag{32c}
$$

$$
a = A \tag{32d}
$$

$$
b = B \tag{32e}
$$

where *A* and *B* are the empirical equation coefficients. In this case the direction coefficient value of the "compensation" equation is also determined by eqn. (31).

The equation connecting the excess solubility enthalpy H_e with a mean solution concentration f_a is of a strictly empirical nature

$$
H_{\rm e}/\left(RTf_1f_2\right) = A + Bf_{\rm a} \tag{33}
$$

where f_1 and f_2 are the initial and final solution concentrations. In this case, the direction coefficient α of the "compensation" equation is directly equal to the negative mean value of the mean solution concentration.

$$
\alpha = -\Sigma(f_a)/n \tag{34}
$$

Method for the estimation of the "compensation" equation coefficients

Unlike the classical least-squares method used to determine the coefficients of eqn. (1) and based on the minimization of the sum of the points square deviations from a straight line to the direction of the dependent variable axis, the coefficients of eqn. (25) have been determined by means of the equation based on the minimization of the distance of the points from the straight line, i.e. on the orthogonal regression.

In practice, the difference in values determined by these two methods is not too large. It is, however, of some significance due to the nature of the *a* and b values. It is not clear which of the coefficients of eqn. (1) should be recognized as an independent variable and which as a dependent one. There is no choice in this selection of method as only one of these values is prone to error. Both result from the same calculation procedure using the same set of measured results. In this case, it is natural that the orthogonal regression is applied.

EXPERIMENTAL RESULTS

Table 1 gives the characteristics of the individual sets of experimental results. Each paper is identified by a letter and the sets of experimental results within each paper are labelled in numerical order.

Seventy-two sets of results have been collected from 22 papers: the first 56 sets are concerned with the determination of the Arrhenius equation coefficients; the next 12 sets involve the determination of the enthalpy and entropy from the free enthalpy equation; the subsequent two sets of results refer to the determination of the vapour pressure versus temperature equation coefficients; and the last two sets describe the change of the excess solubility enthalpy with the solution concentration.

The following information is given: the aim of the measurements; the method of measurement; and the factor differentiating the individual pairs of values in a given set of estimation results.

No bias was assumed towards the method of interpreting the individual experiments: the grouping of the sets of values by the authors of each work was a sufficient criterion for assuming a given set to be homogeneous.

The subjects of the papers analysed were as follows:

- the kinetics of dehydration and thermal decomposition, hydrolysis in acid, the martensitic transformation and the decomposition of explosives;

 $-$ the thermodynamics of: GdF₃ evaporation, fluoride synthesis, DNA and RNA transformation, and dissociation of barbituric acid derivatives;

- the change in pressure of organic substances; and
- the thermodynamics of polymer solubility in water solutions.
	- Various measurement techniques were used:

- measurement of the mass change during heating under isothermal conditions and with linear temperature increase (TG);

- $-$ differential thermal analysis (DTA);
- dynamic scanning calorimetry (DSC);
- dilatometry;
- potentiostatic titration;
- torsion-effusion method; and
- microcalorimetry.

TABLE 1

Experimental data

TABLE 1 (continued)

No.	Data set code	Task of work	Measurement method	Variable factor
18	CO ₃	Thermal decomposition of nickel acrylate	Thermogravimetry with linearly increasing	Metal content in copolymer
19	CO ₄	Thermal decomposition of copper acrylate	temperature Thermogravimetry with linearly increasing temperature	Metal content in copolymer
20	D ₀₁	Thermal decomposition of $Cu(SAF)$ ₂	Thermogravimetry with linearly increasing temperature	Different methods of the kinetic constants calculation
21	D ₀₂	Thermal decomposition of $Cu(HNAF)$ ₂	Thermogravimetry with linearly increasing temperature	Different methods of the kinetic constants calculation
22	D ₀₃	Thermal decomposition of $Pd(SAF)_{2}Cl_{2}$	Thermogravimetry with linearly increasing temperature	Different methods of the kinetic constants calculation
23	D ₀₄	Thermal decomposition of $Pd(HNAF)$ ₂ $Cl2$	Thermogravimetry with linearly increasing temperature	Different methods of the kinetic constants calculation
24	E01	Thermal dehydration of $Ce_2(SO_4) \cdot nH_2O$ and $Ce_2(SO_4) \cdot nD_2O$ (Jander eqn.)	Thermogravimetry with linearly increasing temperature	Number of H_2O or D_2O molecules
25	E02	Thermal dehydration of $Ce_2(SO_4) \cdot nH_2O$ and $Ce_2(SO_4) \cdot nD_2O$ (Ginstling eqn.)	Thermogravimetry with linearly increasing temperature	Number of H_2O or D_2O molecules
26	F01	Thermal dehydration of Mg, Ca, Al, Cr, Fe Co, Ni, Zn, Mn and Cd complex salts with citric acid	Thermogravimetry with linearly increasing temperature	Kind of cation
27	G01	Thermal dehydration of Cu and Zn salts of carboxylic acids	Thermogravimetry with linearly increasing temperature	Kind of salts
28	G02	Thermal decomposition of Cu and Zn salts of carboxylic acids	Thermogravimetry with linearly increasing temperature	Kind of salts
29	H ₀ 1	Thermal decomposition of $(NH_4)_3M(SO_4)_3$	Thermogravimetry at constant temperature	$M = Al$, Cr or Fe
30	H ₀ 2	Thermal decomposition of $NH4M(SO4)2$	Thermogravimetry at constant temperature	$M = Al$, Cr or Fe
31	H03	Thermal decomposition of $M_2(SO_4)_3$	Thermogravimetry at constant temperature	$M = Al$, Cr or Fe
32	101	Thermal decomposition of a series of poly- thiocarbonates	Thermogravimetry with linearly increasing temperature	Kind of polythio- carbonates

TABLE 1 (continued)

No.	Data set code	Task of work	Measurement method	Variable factor
33	I01	Thermal dehydration	Thermogravimetry	Particle size
		of $(COOH)_2 \cdot 2H_2O$	at constant temperature	in samples
34	I ₀₂	Thermal dehydration	Termogravimetry with	Different kinetic
		of $(COOH)_2 \cdot 2H_2O$	linearly increasing temperature	model equations
35	103	Thermal dehydration	Thermogravimetry with	Particle size
		of $(COOH)_2 \cdot 2H_2O$	linearly increasing temperature	in samples
36	K01	Exothermic decompo-	Differential scanning	Different kinetic
		sition of energetic	calorimetry	model equations
		materials: cast sing-		(integral method)
		gle base propellent		
37	K02	Exothermic decompo-	Differential scanning	Different kinetic
		sition of energetic	calorimetry	model equations
		materials: cast sin-		(differential
		gle base propellent		method)
38	K03	Exothermic decompo-	Differential scanning	Different kinetic model equations
		sition of energetic materials: double	calorimetry	(integral method)
		base propellent		
39	K04	Exothermic decompo-	Differential scanning	Different kinetic
		sition of energetic	calorimetry	model equations
		materials: double		(differential
		base propellent		method)
40	K05	Exothermic decompo-	Differential scanning	Different kinetic
		sition of energetic	calorimetry	model equations
		materials: 1,4,5,8-		(integral method)
		$tetranitro-1,4,5,8-$		
		zadecalin		
41	K06	Exothermic decompo-	Differential scanning	Different kinetic
		sition of energetic	calorimetry	model equations (differential
		materials: 1,4,5,8- tetranitro-1,4,5,8-		method)
		zadecalin		
42	K07	Exothermic decompo-	Differential scanning	Different kinetic
		sition of energetic	calorimetry	model equations
		materials: 2.6-dini-		(integral method)
		trophenol (trace 1)		
43	K08	Exothermic decompo-	Differential scanning	Different kinetic
		sition of energetic	calorimetry	model equations
		materials: 2,6-dini-		(differential
		trophenol (trace 1)		method)
44	K09	Exothermic decompo- sition of energetic	Differential scanning	Different kinetic
		materials: 2,6-dini-	calorimetry	model equations (integral method)
		trophenol (trace 2)		

TABLE 1 (continued)

No. Data set code		Task of work	Measurement method	Variable factor	
45	K10	Exothermic decompo- sition of energetic materials: 2,6-dini- trophenol (trace 2)	Differential scanning calorimetry	Different kinetic model equations (differential method)	
46	K11	Exothermic decompo- sition of energetic materials: 2,6-dini- trophenol (trace 3)	Differential scanning calorimetry	Different kinetic model equations (integral method)	
47	K ₁₂	Exothermic decompo- sition of energetic materials: 2,6-dini trophenol (trace 3)	Differential scanning calorimetry	Different kinetic model equations (differential method)	
48	K ₁₃	Exothermic decompo- sition of energetic materials: 2,6-dini- trophenol (trace 4)	Differential scanning calorimetry	Different kinetic model equations (integral method)	
49	K14	Exothermic decompo- sition of energetic materials: 2,6-dini- trophenol (trace 4)	Differential scanning calorimetry	Different kinetic model equations (differential method)	
50	L ₀₁	Decomposition of cellulose	Differential scanning calorimetry	Acid concentration, sample quantity, acid quantity	
51	L ₀₂	Decomposition of D-glucose	Differential scanning calorimetry	Acid concentration, sample quantity, acid quantity	
52	M01	Kinetics of the acid hydrolysis of cellu- losic materials	Differential scanning calorimetry	Different kinds of cellulosic materials	
53	N01	Kinetics of the mar- tensitic transforma- tion in CuAlNi-43 alloy	Differential scanning calorimetry	Different kinetic model equations, scanning rate	
54	P ₀ 1	First stage of thermal explosion tertiary butyl peroxybenzoate	Differential thermal analysis	Different kinetic model equations, mass of sample, atmosphere	
55	P ₀₂	First stage of thermal explosion of tertiary butyl peroxybenzoate	Low pressure autoclave	Pressure of O_2	
56	Q ₀₁	Burning velocity of gas-less pyrotechnic mixtures	Thermodilatometry	Kind of pyrotechnic mixture	
57	R01	Thermodynamics of GdF_3 evaporation	Thermogravimetry at constant temperature with evolved gas detection	Sample preparation: Ta or Mo cell, cast or powder	

- A M.C. Ball and M.J. Casson, J. Therm. Anal., 28 (1983) 371.
- B SK. Basu and M. Taniguchi, J. Therm. Anal., 32 (1987) 1105.
- C A. Gronowski and Z. Wojtczak, J. Therm. Anal., 30 (1985) 345.
- D V. Indira and G. Parameswaran. J. Therm. Anal., 32 (1987) 1151.
- E F. Martin, A. Gonzalez, J. Jimenez, J. Largo and J.A. De Saja, J. Therm. Anal., 29 (1984) 257.
- F J. Maslowska, J. Therm. Anal, 29 (1984) 895.
- G J. Maslowska and A. Baranowska, J. Therm. Anal., 29 (1984) 309.
- H T. Nagaishi, S. Ishiyama, M. Matsumoto and S. Yoshinaga, J. Therm. Anal., 29 (1984) 121.
- I L.H. Tagle, F.R. Diaz and L. Rivera, Thermochim. Acta, 118 (1987) 111.
- J II. Tanaka, J. Therm. AnaL, 29 (1984) 1115.
- K Hu Rongzu, Yang Zhengquan and Liang Yanjun, Thermochim. Acta, 123 (1988) 135.
- L K.S. Kunihisa and H. Ogawa, J. Therm. Anal., 30 (1985) 49.
- M K.S. Kunihisa and H. Ogawa, Thermochim. Acta, 123 (1988) 255.
- N Xiong Liu, Tianhui Su and Luo Pu, Thermochim. Acta, 123 (1988) 9.
- 0 J. Verhoeff and P.J. van den Berg, J. Therm. Anal., 29 (1984) 533.
- P T. Boddington and P.G. Laye, Thermochim. Acta, 120 (1987) 203.
- R J.R. McCreary and R.J. Thorn, High Temp. Sci., S (1973) 97.
- S P. Germain, G. Perachon, J.M. Letoffe and P. Claudy, Thermochim. Acta, 119 (1987) 243. (D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. HaIow, S.M. Bailey, K.L. Chumey and R.L. NuttaIl, NBS, J. Phys. Chem. Ref. Data, 11 (1982) No 2.)
- T H.H. Klump, Thermochim. Acta, 119 (1987) 103.
- U M.S. Masoud, S.A. Abou Ali, G.Y. Ali and I.M. Abed, Thermochim. Acta, 122 (1987) 209.
- V D. Ferro and G. Della Gatta, Thermochim. Acta, 122 (1987) 189.
- W H. Azuma, K. Hanada, Y. Yoshikawa, Y. Baba and A. Kagemoto, Thermochim. Acta, 123 (1988) 271.

The factors differentiating the values collected in a single set were:

 $-$ the kind of the material tested;

- the experimental parameters: $CO₂$ or $O₂$ partial pressure, weight of the sample and concentration of the solvent, form of the sample (solid or powdered, with or without particle size ranges), concentration of solution; and

- the elements of the calculation procedure: various model equations used in the calculations, utilization of only a part of the whole set of experimental results, various methods for linearization of the model equation.

Table 2 lists the results of the calculations of the "compensation" equation coefficients for the individual sets of experimental results. The code of the set, the number of value pairs used in the calculations of coefficients a and b , the values of the "compensation" eqn. (25) coefficients and the correlation coefficients $r_a(a, b)$ calculated from the experimental data describing the correlation of the given "compensation" equation have been given.

Table 3 presents the statistical values with reference to the quality of the estimation process or the "compensation" equation coefficients, i.e. the

TABLE 2

Results of calculations

No.	Data set	Number of experiments		Coefficients of the compensation equation		
	code ^a	n	α	β	coefficient $r_e(a, b)$	
$\mathbf{1}$	A01	4	0.05635	10.29275	0.97936	
$\overline{\mathbf{c}}$	A02	3	0.06881	4.92009	0.98900	
$\overline{\mathbf{3}}$	A03	5	0.03598	30.12202	0.98416	
4	A04	6	-0.12108	9.11486	-0.79922	
5	A05	6	0.09077	2.06758	0.97841	
6	A06	5	0.04921	32.09453	0.83524	
7	A07	4	0.06764	3.88541	0.99438	
$\bf 8$	A08	8	0.06269	8.09927	0.88162	
9	A09	$\overline{7}$	0.07550	-13.24393	0.99045	
$10\,$	A10	8	0.03957	-25.26714	0.98099	
11	A11	9	-0.11060	8.63348	-0.88926	
12	A12	9	0.09390	-0.75857	0.99436	
13	A13	8	0.05736	19.96403	0.99448	
14	A14	8	0.06517	4.94483	0.99902	
15	B01	$\overline{\mathbf{4}}$	0.079720	-4.93260	0.98134	
16	CO ₁	7	0.07011	-0.97281	0.99996	
17	CO ₂	$\overline{7}$	0.08414	-3.82835	0.99940	
18	CO ₃	7	0.08809	-3.84667	0.99287	
19	CO ₄	7	0.07533	-2.00554	0.99950	
20	D01	3	0.10660	-4.22818	0.99818	
21	D ₀₂	$\overline{\mathbf{3}}$	0.10650	-5.43015	0.99826	
22	D ₀₃	$\overline{\mathbf{3}}$	0.07220	-1.60699	0.99035	
23	D ₀₄	3	0.08730	-3.79009	0.99964	
24	E01	6	0.13792	-5.00813	0.99036	
25	E02	6	0.21069	-6.29274	0.99605	
26	F01	$10\,$	0.04934	6.27845	0.68907	
27	G01	4	0.13228	1.54588	0.92711	
28	G02	$\overline{\mathcal{I}}$	0.10756	0.07959	0.97078	
29	H ₀₁	3	0.15666	-0.28161	0.98713	
30	H02	3	0.06498	12.59886	0.96022	
31	H03	$\overline{\mathbf{3}}$	0.07274	8.37917	0.99178	
32	101	17	0.30971	-1.97556	0.98200	
33	J01	6	0.16705	-3.98699	0.99930	
34	J02	11	0.15363	-3.00962	0.99990	
35	J03	\mathfrak{Z}	0.13994	-1.88040	0.99850	
36	K01	24	0.10874	-2.78569	0.99989	
37	K02	28	0.10847	-2.64909	0.99989	
38	K ₀₃	21	0.10924	-2.77869	0.99985	
39	K04	27	0.10916	-2.71646	0.99986	
40	K05	24	0.10203	-2.70367	0.99983	
41	K06	28	0.10269	-2.71604	0.99991	
42	K07	24	0.08915	-2.88884	0.99964	
43	K08	27	0.08921	-2.84638	0.99961	
44	K09	24	0.08936	-2.89341	0.99967	

No.	Data set	Number of experiments	Coefficients of the compensation equation	Correlation coefficient	
	code ^a	n	$\pmb{\alpha}$	β	$r_{\rm e}(a, b)$
45	K10	27	0.08938	-2.83002	0.99967
46	K11	24	0.08721	-2.61048	0.99929
47	K ₁₂	27	0.08766	-2.78877	0.99969
48	K13	24	0.08716	-2.85372	0.99947
49	K14	27	0.08746	-2.84710	0.99960
50	L ₀₁	7	0.08891	5.57191	0.98206
51	L ₀₂	6	0.02415	13.22803	0.21042
52	M01	4	0.25577	$-4,89438$	0.99681
53	N ₀ 1	16	0.45164	-20.52507	0.90227
54	P01	10	0.13837	1.87422	0.99914
55	P ₀₂	7	0.11177	4.05009	0.45292
56	Q01	3	0.16467	2.19938	0.99364
57	R ₀₁	11	0.67312	-24.53347	0.99871
58	S01	5	-4.00177	-6528.95444	-0.17855
59	S ₀₂	5	0.81118	528.96247	0.93047
60	T01	$\overline{\mathbf{4}}$	-0.45797	746.91420	-0.84613
61	T ₀₂	$\overline{\mathbf{3}}$	2.37461	3.29753	0.97201
62	U01	6	3.00570	-17.44498	0.99187
63	U ₀₂	3	4.23405	-65.58247	0.99231
64	U03	10	3.61687	-48.97841	0.91225
65	U ₀₄	5	2.93384	-34.77024	0.99987
66	U ₀₅	5	2.81906	-38.35932	0.99773
67	U06	6	1.60187	-28.46769	0.98545
68	U ₀₇	5	2.84233	-37.45431	0.99960
69	V ₀₁	4	0.00269	-3.80551	0.99862
70	V ₀ 2	6	-0.00004	15.25443	-0.02634
71	W01	4	-0.09557	0.09320	0.98622
72	W ₀₂	9	-0.01438	-0.01884	-0.51956

TABLE 2 (continued)

^a Key as in Table 1.

standard deviation of the coefficients $s(\alpha)$ and $s(\beta)$ as well as the correlation coefficient $r(\alpha,\beta)$ calculated from

$$
r(\alpha, \beta) = \text{cov}(\alpha, \beta) / [s(\alpha)s(\beta)] \tag{35}
$$

which together give a full description of the covariance matrix of the "compensation" equation coefficients. In addition, the mean values of the variables a and *b* have been given.

Table 4 lists the mean temperature values and their standard deviations, estimated from the data describing the measurement conditions, available from the individual papers. They are usually very rough, based on the little information in the texts, on the descriptions of figures or given as certain values, e.g. temperatures characterizing some stages of the experiment: start

TABLE 3

Statistical properties of the compensation equation, $b = \alpha a + \beta$ coefficients sets

No.	Data	Statistical properties				
	set	Standard		Correlation	Mean value	
	$code^a$	deviation		coefficient		
		$s(\alpha)$	$s(\beta)$	$r(\alpha, \beta)$	$\overline{\overline{b}}$	ā
$\mathbf{1}$	A01	0.00819	3.29303	-0.99566	32.83500	400.00000
$\overline{\mathbf{c}}$	A02	0.01024	5.99876	-0.96925	43.98666	567.66666
3	A03	0.00373	2.99285	-0.96709	57.99600	774.60000
4	A04	0.04488	1.80383	-0.99521	4.27166	40.00000
5	A05	0.00950	4.30076	-0.99254	42.82333	449.00000
6	A06	0.01865	19.92829	-0.99682	84.48400	1064.60000
$\overline{7}$	A07	0.00506	6.06283	-0.97985	83.16500	1172.00000
8	A08	0.01364	5.77023	-0.99672	34.51875	421.37500
9	A09	0.00467	2.50074	-0.97418	40.53000	521.28571
10	A10	0.00319	2.63043	-0.97863	60.38500	806.75000
11	A11	0.02124	0.86661	-0.99420	4.14777	40.55555
12	A12	0.00375	1.81566	-0.99489	44.46222	481.55555
13	A13	0.00246	2.82895	-0.99714	85.67000	1145.50000
14	A14	0.00117	1.39724	-0.97012	80.43875	1158.25000
15	B01	0.01097	2.27096	-0.99969	11.55950	206.87500
16	CO ₁	0.00027	0.06709	-0.98892	15.76560	238.71428
17	CO ₂	0.00128	0.30618	-0.98196	15.80178	233.28571
18	CO ₃	0.00469	0.99331	-0.98219	14.47658	208.00000
19	CO ₄	0.00105	0.17835	-0.99601	10.67171	168.28571
20	D01	0.00635	0.60150	-0.99677	5.82816	94.33333
21	D ₀ 2	0.00621	0.54317	-0.99598	3.84666	87.10000
22	D03	0.01005	0.76555	-0.99777	3.88090	76.00000
23	D04	0.00231	0.25813	-0.99862	5.94476	111.50000
24	E01	0.00946	1.17789	-0.99566	12.08586	123.93333
25	E02	0.00899	0.18255	-0.85360	-2.64145	17.33000
26	F01	0.01830	1.20096	-0.98329	9.46215	64.52000
27	G ₀₁	0.03716	2.26794	-0.98458	9.49287	60.07500
28	G02	0.01175	1.97350	-0.96807	17.56331	162.54285
29	H01	0.02477	3.46275	-0.95046	20.53333	132.86666
30	H02	0.01881	3.30047	-0.98279	23.80000	172.36666
31	H ₀ 3	0.00933	2.15451	-0.97615	24.76666	225.26666
32	I01	0.01410	0.77398	-0.94709	14.12228	51.97647
33	J01	0.00303	0.24549	-0.99823	9.50000	80.73333
34	J ₀₂	0.00067	0.16468	-0.88256	30.06272	215.26363
35	J03	0.00750	0.61190	-0.99996	9.52333	81.49000
36	K01	0.00033	0.13200	-0.75987	29.50208	296.91875
37	K ₀₂	0.00030	0.10900	-0.74561	26.41392	267.92500
38	K03	0.00041	0.15413	-0.79646	29.33571	293.96095
39	K04	0.00035	0.11070	-0.74342	22.78851	233.63777
40	K05	0.00038	0.18229	-0.76673	33.97583	359.48791
41	K06	0.00025	0.12305	-0.77809	35.12071	368.42142
42	K07	0.00050	0.13944	-0.78501	16.61333	218.75458
43	K08	0.00049	0.13399	-0.78716	16.33000	214.95074
44	K09	0.00048	0.14276	-0.78815	17.88875	232.56291

Statistical properties No. Data						
	set code ^a	Standard deviation		Correlation coefficient	Mean value	
		$s(\alpha)$	$s(\beta)$	$r(\alpha, \beta)$	\overline{b}	\bar{a}
45	K10	0.00045	0.12888	-0.78213	16.98962	221.74481
46	K11	0.00069	0.21621	-0.77882	18.62875	243.54083
47	K12	0.00043	0.13354	-0.78866	18.63370	244.37370
48	K13	0.00059	0.16204	-0.78297	15.68000	212.63500
49	K14	0.00048	0.13249	-0.79520	16.08259	216.43000
50	L ₀₁	0.00757	1.52963	-0.95459	22.71420	192.80000
51	L ₀₂	0.05606	0.80437	-0.99488	16.67511	142.73333
52	M01	0.01360	2.97527	-0.99004	50.50025	216.57500
53	N01	0.04918	0.52137	-0.80630	18.07925	85.47500
54	P01	0.00198	0.33903	-0.92863	23.77968	158.30000
55	P02	0.09723	11.48787	-0.99275	17.15930	117.28571
56	Q ₀₁	0.01817	0.71946	-0.97670	8.56666	38.66666
57	R01	0.00858	0.86251	-0.99954	43.04181	100.39000
58	S01	12.35311	507.38122	-0.99999	222.04000	-1687.00000
59	S ₀ 2	0.13523	77.67447	-0.99933	63.34000	-574.00000
60	T01	0.17404	60.12864	-0.94436	597.50000	326.25000
61	T ₀₂	0.49568	2.16675	-0.99895	13.66666	4.36666
62	U ₀₁	0.17460	1.84475	-0.86841	10.13333	9.17533
63	U02	0.50098	13.01826	-0.99132	43.48666	25.76000
64	U ₀₃	0.53550	6.30651	-0.96512	-7.86900	11.36600
65	U04	0.02385	0.36959	-0.95010	8.41600	14.72000
66	U05	0.09827	0.78044	-0.88852	$-18,46800$	7.05600
67	U06	0.10688	1.46551	-0.73590	-12.30533	10.08966
68	U07	0.04143	0.51226	-0.96737	-3.46000	11.96000
69	V01	0.00010	0.71498	-0.99983	15.42750	7130.25000
70	V ₀ 2	0.00075	6.06375	-0.99937	14.93500	7975.83333
71	W01	0.01123	0.00798	-0.54181	0.13000	-0.38500
72	W02	0.00893	0.13863	-0.47295	0.08666	-7.33444

TABLE 3 (continued)

of the reaction, peak temperature, etc. They are usually inaccurate, which is proven by the high standard temperature deviation values. They have been compared with the values of the mean temperature calculated from the values of the α coefficients of the "compensation" equations. In addition, the standard deviations for the temperature are given. For the last two sets, the mean concentration values are given instead of temperature, as in these cases concentrations, not temperature, were the independent variables.

CHARACTERISTICS OF THE EXPERIMENTAL RESULTS

Brief characteristics of the groups of results are given below.

TABLE 4

Comparison between the values calculated from the "compensation" equation and the "experimental" values

No.	Data		Temperature (K)				
	set	Calculated		Experimental			
	code ^a	Value	Standard deviation	Value	Standard deviation		
$\mathbf{1}$	A01	927	135	584	126		
$\overline{\mathbf{c}}$	A02	759	113	584	126		
3	A03	1452	151	584	126		
4	A04	-431	160	584	126		
5	A05	575	60	584	126		
6	A06	1061	402	584	126		
$\overline{7}$	A07	772	58	584	126		
8	A08	833	181	no data			
9	A09	692	43	no data			
10	A10	1320	106	no data			
11	A11	-472	91	no data			
12	A12	556	22	no data			
13	A13	911	39	no data			
14	A14	801	14	no data			
15	B01	655	90	749	28		
16	CO ₁	745	3	648	48		
17	CO ₂	621	10	633	38		
18	CO ₃	593	32	611	42		
19	CO ₄	693	10	622	44		
20	D ₀₁	490	29	583	137		
21	D ₀₂	490	29	667	156		
22	D ₀₃	723	101	583	137		
23	D04	598	16	600	169		
24	E01	379	26	384	64		
25	E02	248	11	506	59		
26	F01	1059	393	363	25		
27	G01	395	111	367	79		
28	G02	486	53	529	129		
29	H01	333	53	660	42		
30	H ₀₂	804	233	741	94		
31	H03	718	92	950	81		
32	101	706	32	730	175		
33	J01	313	6	318	10		
34	J_{02}	340	$\overline{\mathbf{c}}$	336	4		
35	J03	373	20	335	4		
36	K01	480	$\overline{\mathbf{c}}$	467	6		
37	K02	482	$\mathbf{1}$	467	6		
38	K03	478	$\overline{\mathbf{c}}$	462	$\boldsymbol{7}$		
39	K04	478	$\overline{\mathbf{c}}$	462	7		
40	K05	512	\overline{c}	496	8		
41	K06	509	$\mathbf{1}$	496	8		
42	K07	586	3	558	19		
43	K08	585	3	558	19		

No.	Data	Temperature (K)			
	set code ^a	Calculated		Experimental	
		Value	Standard deviation	Value	Standard deviation
44	K09	585	3	557	18
45	K10	584	3	557	18
46	K11	599	5	571	14
47	K12	596	3	571	14
48	K13	599	4	571	16
49	K14	597	3	571	16
50	L ₀₁	587	50	434	52
51	L02	2163	5021	430	40
52	M01	470	25	492	18
53	N01	116	13	126	198
54	P ₀₁	377	5	377	10
55	P ₀₂	467	407	403	35
56	Q01	317	35	289	860
57	R ₀₁	1485	19	1465	no data
58	S01	-250	771	no data	
59	S ₀₂	1233	206	no data	
60	T01	-2184	830	317	8
61	T02	421	88	315	$\overline{7}$
62	U01	333	19	305	6
63	U ₀₂	236	28	305	6
64	U03	276	41	305	6
65	U04	341	3	305	6
66	U05	355	12	305	6
67	U06	624	42	305	6
68	U07	352	5	305	6
69	V ₀₁	371	14	405	13
70	V ₀₂	-24969	473684	463	19
71	W01	0.0955	0.0112	0.0413	0.0254
72	W02	0.0143	0.0089	no data	

TABLE 4 (continued)

a Key as in Table 1.

Group A

The individual "compensation" equations are characterized by a high correlation coefficient $r_e(a, b)$ value, which proves the significance of these relationships. Temperature values, calculated on the basis of available data on the experimental conditions are in agreement as regards the order of values for the individual mean temperatures calculated for the given "compensation" equations according to eqn. (28). In only two cases were the calculated mean temperatures negative (sets A04 and All). The results of calculations regarding the same reactions, but calculated for the experimental values obtained under isothermal conditions and the linear temperature increase, are very similar (1 and 8, 2 and 9, etc.). The high values of the α coefficient of the "compensation" equation, calculated for the isothermal method, correspond with the high values of this coefficient determined for the data obtained by the non-isothermal method. This indicates that the $CO₂$ pressure changes affect the kinetics of the individual reactions. This effect, however, is relatively small. The problem of the agreement of two corresponding sets of results, A04 (isothermic measurements) and All (non-isothermic measurements), is ambiguous. In both cases the calculated mean temperature values are negative, but their absolute value approximates the appropriate value estimated for the experimental results analysed.

Group B

The high value of the correlation coefficient $r_e(a, b)$ indicates the significance of the "compensation" relationship. The difference between the mean temperature value calculated for the given "compensation" equation and the value estimated from the available experimental values indicates that the oxygen pressure change has a very weak effect on the "NbS₂" oxidation kinetics. The difference is of the order of 14% which can be acknowledged as a relatively small difference in comparison to the calculated standard deviation value.

Group C

The mean temperature values determined are close to the experimental values estimated from the data available in the article. The difference is particularly small for the CO1 set. All differences in the corresponding temperatures, the calculated and "experimental", are statistically insignificant. This good agreement of the values calculated for the "compensation" equations with the experimental values indicates that the experimental error is the principal element affecting the change in the Arrhenius equation coefficient values. It is difficult to explain the connections between the differences observed and the effect of metal concentration changes in the copolymer tested.

Group D

The calculated mean temperature values are generally lower than the "experimental" values. It should be stressed, however, that the experimental values for the mean temperature have been calculated based on the temperature boundary values determining the DTG peak boundaries. Statistically, the differences observed are insignificant.

Group E

The high value of the correlation coefficient $r_e(a, b)$ indicates the significance of the "compensation" equations determined for the first dehydration stage. The calculated mean temperature value is close to the value estimated based on the experimental results. This indicates that the experimental error is the only factor causing the change in the Arrhenius equation coefficients. This is particularly clear for the results regarding the first stage of the dehydration process. Here it can be presumed that the course of this process runs independently of the initial number of $H₂O$ or $D₂O$ molecules joined with the sulphate.

In the second stage of the dehydration process, the calculated mean temperature value differs from the "experimental" one. This result becomes even more striking after repeated calculations of the "compensation" equation coefficients, rejecting the last two points, which are so distinctly different from the rest. In this case the calculated mean temperature value is considerably higher than the experimental value. It seems that the "compensation" effect observed is a result of the random error overlapping the effect connected with the second stage dehydration reaction course. In this case, the course of the reaction is different for different substances, characterized by different initial numbers of $H₂O$ or $D₂O$ molecules.

Group F

The mean temperature value determined is different from the "experimental" value. The "compensation" relationship stated is characterized by a relatively low correlation coefficient $r_e(a, b) = 0.68907$. Nevertheless, this relationship is statistically significant. It has been obtained despite the great variety in chemical composition of the substances tested. An overlapping of the experimental error effect with the actual effect, resulting from the differences in chemical properties, has occurred here. It is also interesting that the "compensation" effect has been observed although different models of chemical reactions have been attributed to the dehydration processes of various compounds.

Group G

In this case, there is good agreement between the mean temperature values calculated for the given "compensation" equation and the "experimental" values. The observed effect has occurred although the tests were made for a large group of chemical substances and the description assumed different values of reaction order. It is clear, that the actual differences between the dehydration processes of the individual substances are comparable with the error of the experimental method applied.

Group H

It is not clear from the text whether natural or decimal logarithms from the Arrhenius equation pre-exponential constant are given. In these calculations, it is assumed that these are decimal logarithms. In this case, a good agreement between the calculated and experimental mean temperature values was found. The high value of the correlation coefficient for the "compensation" equations indicates that the relationships observed are significant. It seems that in the cases observed the experimental error has an effect comparable to the effect of the variable factors. In a case when the pre-exponential constant value would be expressed in form of the natural logarithm, the coefficient values given should be multiplied by 2.3025 $(log_{1}(10))$. Thus, a closer agreement for the H01 set would be achieved, but the agreement between the remaining two sets would be worsened. However, this would not change, in principal, the opinion regarding the significance of the measurements made.

Group 1

A good agreement between the mean temperature value, calculated based on the "compensation" equation, and the "experimental" value is observed. It seems that the effect of the changing properties of the individual substances is low in comparison with the experimental error.

Group J

The calculations made indicate a good agreement between the calculated mean temperature value and the "experimental" one. The effect of grain size and selection of a specific kinetic model are insignificant as regards the calculated values of the activation energy and pre-exponential constant. The data presented do not allow for an explicit selection of the best kinetic model describing the tested chemical reaction kinetics. All pairs of values describe the process tested equally well.

Group K

The re-calculation of the experimental results, taking into account various kinetic models, has only revealed the effect of experimental error on the results of the estimation of the Arrhenius equation constants. Despite the enormous spread of the activation energy and pre-exponential constant values, the mean temperature determined, based on the "compensation" equation, is very close to the "experimental" value. The agreement is strengthened by the simultaneous increase in both calculated and "experimental" temperatures obtained with subsequent pairs of values of the Arrhenius equation coefficients. It seems that selecting one of the several kinetic equations analysed, based only on the experimental results presented, would not be justified.

Group L

Of two sets presented by the authors, the first, LOl, shows a typical agreement of the mean temperature calculated from the "compensation" equation and the "experimental" value.

The second set, L02, is characterized by a large discrepancy between the values. However, in this case the low correlation coefficient value explains the reason; the calculated mean temperature value is rather random.

Group M

It is not clear whether natural or decimal logarithms of the pre-exponential constant are given. Preliminary calculations indicate that these are natural logarithm values. The "compensation" equation coefficient has been calculated in the "standard" form (eqn. (26)), taking into account the decimal logarithm. The mean temperature value was 470 K, which is close to the "experimental" one (492 K) calculated as the geometrical mean of the peaks on the DSC curve. This indicates that the methodology applied does not allow for a differentiation of the Arrhenius equation coefficients due to the type of material tested within the range of the variability investigated.

Group N

As in the case of set K, it can also be seen here that the bases for a selection of the form of the kinetic equation are very weak if they are determined using the presented results only. A good agreement between the value calculated from the "compensation" equation and the "experimental" value of the mean measurement temperature is confirmation of this.

Group P

There is good agreement between the value calculated from the "compensation" equation and the "experimental" value. The maximum difference does not exceed 64 K at the mean temperature of approximately 467 K. This difference is statistically insignificant.

Group **Q**

This is the last group of data concerning the determination of the Arrhenius equation coefficient based on the kinetics test results. In this case good agreement between the calculated and "experimental" values of the mean measurement temperature is observed. This indicates that the methodology applied does not allow the determination of the Arrhenius equation constant values with an accuracy permitting differentiation of the properties of the individual pyrotechnic mixtures.

Group R

The very good agreement between the mean temperature value calculated from the "compensation" equation (1485 K) and the mean temperature value given by the authors (1465 K) indicates that the effect of changed measurement conditions, i.e. the type of crucible material and form of the substance (powder, solid) is not significant. In contrast to the cases discussed above, the estimation problem (free-enthalpy measurements) is here of greater importance. In previous cases (Arrhenuis equation), the values of both coefficients, i.e. the pre-exponential constant and the activation energy, were used in only one further calculation procedure to estimate the kinetic equation constants for a given temperature, but the enthalpy or entropy values are often used separately in subsequent practical calculations. Selection of the wrong pair of Arrhenius equation constants is of less significance as all pairs describe the experimental values set more or less accurately, and the Arrhenius equation is used merely to interpolate the temperatures of intermediate results, which are not measured directly. Selection of the wrong pair of enthalpy and entropy values is of much greater importance. Although all the pairs describe the free enthalpy changes equally well, the calculation of the enthalpy change in the subsequent reaction using the wrong enthalpy values may lead to large calculation errors or even to wrong conclusions regarding the character of the reaction analysed. This indicates a new aspect of the thermodynamic data agreement problem. The existing correlative relationships between the enthalpy and entropy values determined indirectly by measurement of the free enthalpy changes, i.e. a change in equilibrium constant in the temperature function, may be weakened by using a different type of experimental data. For example, it becomes necessary to take into account additionally the calorimetric data, i.e. the results of the direct enthalpy measurements. In such a case, however, the estimation procedure becomes more complex and cannot be reduced to the problem of the estimation of the straight line coefficient. But this is quite a different problem [2].

Group S

The authors list the enthalpy and entropy values for the formation of telluric fluorides of alkali metals, Sol, and alkali metal fluorides, S02. In the first case the individual values originated from different sources or were the results of the authors' assessment; in the second case, all the data were taken from one source, i.e. one of the well-known thermodynamic data sets. In the first case no relationship between the enthalpy and entropy values for the individual compounds were stated and the correlation coefficient $r_e(a, b)$ was very low (-0.17855) . Such a relationship exists in the second case. The correlation coefficient was very high $r_e(a, b) = 0.93047$. The calculated value of the mean measurement temperature for this set was 1234 K. The data regarding the types of reactions and experimental conditions are insufficient to allow any conclusions to be drawn. It can be added that the determined temperature value does not seem unreasonable. In relation to the comments made regarding the previous group of results (Group R), this problem seems to be more relevant. The enthalpy and entropy values for the formation of alkali metal fluorides are, it seems, merely a mean estimation of this group of chemical compounds. The problem of determining accurate values of the thermodynamic functions, differentiating the individual fluorides, is still open. The values of the presented thermodynamic functions are certainly consistent, but are they correct?

Group T

After analysis of the data listed by the author, certain doubts have arisen. Despite the footnotes, both tables listing the results are presented in the same manner yet contain differences: the symbols used in the tables' description, the unit dimensions and the number of columns. Due to these uncertainties, it has been assumed that the corresponding enthalpy and entropy values are those listed in the first two columns of the subsequent tables. The existence of a relationship between the appropriate enthalpy and entropy values has been stated in both cases. However, in the first case, regarding the transformation of the DNA analogs, the mean temperature value, calculated from the "compensation" equation, is significantly different from the "experimental" value. In the second case, regarding the data on RNA analog transformation, there is an agreement between the values.

Group U

Only in the case of UO6 is there a more visible difference between these values.

Group V

Both sets refer to the measurement of the pressure changes with temperature. In principle, these measurements are analogous to those determining the free enthalpy equation coefficients. However, this case is different due to a difference in the form of the model equation applied. There was good agreement between the calculated and "experimental" temperatures for the first data set. For the second, the difference is large, but the low correlation coefficient of the "compensation" equation, $r_a(a, b) = 0.0264$, indicates that the calculated value of the mean measurement temperature is a completely random value.

Group W

This last group of experimental data describes a process which is completely different from the others and, therefore, the model equation is different from all the cases discussed so far. However, there is the existence of the "compensation" relationship between the straight line equation coefficients, determined by means of the least-squares method. In this case the directivity coefficient of the "compensation" equation is directly equal to the negative value of the mean polymer concentration in the solution. This results directly from the form of the model equation (33) assumed. The value determined in this way is in agreement with the "experimental" one as regards in the sign and twice as high. It should be added that this apparently large difference is statistically irrelevant in relation to the standard deviation of the "compensation" equation directivity coefficient.

Similarly, for the second data set, the directivity coefficient value does not differ very much from the value determined for the previous set. Nevertheless, in this case it cannot be compared to the "experimental" value due to the lack of information allowing for such an estimation. However, it does seem that the relationship presented mainly discloses the effect of the experimental error and does not allow for a differentiation of the individual measurements.

CONCLUSIONS

Among the 72 sets of data analysed, only in 4 cases has a relationship between the straight line equation coefficients utilized as model equations not been stated.

In the remaining cases, very strong correlations have been found, with correlation coefficients usually exceeding 0.9. Among these 68 sets, in only three cases was a significant difference stated between the calculated value of the mean measurement temperature and the corresponding "experimental" value estimated for a given experiment. In two cases the calculated value of the mean temperature approximates the absolute temperature value for the given "compensation" equation.

In general, it is striking that the "compensation" type of relationship is observed particularly frequently for data obtained by the dynamic method. It seems that this results from the ease of "production" of large data sets in relatively short time periods. Among the data sets analysed, a majority concerned determination of the Arrhenius equation coefficients (56 cases, i.e. 83% of the total), while 42 cases (i.e. 75%) used dynamic methods. This does not mean that isothermal methods are free of them; they are just more laborious and time-consuming to analyse.

The "compensation" problem also occurs in the case of thermodynamic tests which are most frequently carried out under isothermal conditions. Here, the problem of estimation is more significant and a more detailed analysis of the thermodynamic function values estimation methods should be done and more complex estimation procedures applied to allow for a numerous and varied (in the methodological sense) experimental data set. Special attention should be paid to the utilization of the calorimetric test results to reduce the correlation relationship occurring between the enthalpy and entropy values.

In summary, it should be stated that in the opinion of the present authors, no existence of a true compensation equation has been stated; it has only been revealed that the experimental errors were greater than expected by the authors of the works under discussion.

It can be stated that only the results of the most hard-working teams could be utilized in our analysis; an exposure of this error would not be possible in the case of results from one substance analysed by means of one method. The data chosen were from approximately the last two years from papers published recently. In practice, all the experimental data available have been used: no preliminary data selection was made to find those which would indicate the relationship suggested. The common occurrence of such "pseudo-relationships" would suggest that the instrumental methods used at present very frequently do not allow for the differentiation of the properties of individual substances. The values given are mean values for entire groups of similar substances. It can be stated that the effect of the property change of the individual substances on the model equation coefficient values; the pre-exponential constant and activation energy, or enthalpy and entropy, is comparable to the value of the experimental error.

REFERENCES

- 1 J. Norwisz, Z. Smieszek and Z. Kolenda, Thermochim. Acta, 156 (1989) 313.
- 2 J. Norwisz, Archiwum Hutnictwa, 29 (1984) 545.